If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-199=0
a = 2; b = 3; c = -199;
Δ = b2-4ac
Δ = 32-4·2·(-199)
Δ = 1601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1601}}{2*2}=\frac{-3-\sqrt{1601}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1601}}{2*2}=\frac{-3+\sqrt{1601}}{4} $
| -22-6x=12 | | –12=u+2 | | x+0.4x=35 | | 1+12x=-43+3 | | 4^(2x-3)=4^x | | (5+7)=n | | (5+n)=7 | | 54x=15 | | 40x-80=440 | | 4x-9=12x+8 | | 45x+315=810 | | 10=k9^2 | | 13x+2-(x-3)=x-5-3×(x+12)+4x | | 20y+6=66 | | 31-2m=23 | | 7x10=5N | | x+(x*10)=75000 | | 29-5x=5-9 | | 60/100=158586/x | | 8p/5=48 | | 3(x-1)^2(x+1)=0 | | 3(2x+3)=2(4-x) | | 3(2x-3)=4(2x-4) | | 2.7x-1.6=3.8 | | y-(y*0.2)=160 | | y+-0.2y=160 | | (w-6)=12 | | 5x+50°=x-10° | | 3.8x20= | | 3x/7+3=-2x-4/7 | | (x+4)(x–3)=(x–2)(x+6) | | 9x=8+81 |